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Robust Classi�cation for Imprecise EnvironmentsFoster Provost provost@acm.orgTom Fawcett fawcett@basit.comBell Atlantic, 500 Westchester Avenue, White Plains, NY 10604Contact author: Foster ProvostPhone: (914) 644-2169FAX: (914) 644-2237 AbstractIn real-world environments it is usually di�cult to specify target operating conditions precisely. This uncertaintymakes building robust classi�cation systems problematic. We present a method for the comparison of classi�erperformance that is robust to imprecise class distributions and misclassi�cation costs. The ROC convex hull methodcombines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to theparticulars of analyzing learned classi�ers. The method is e�cient and incremental, minimizes the management ofclassi�er performance data, and allows for clear visual comparisons and sensitivity analyses. We then show thatit is possible to build a hybrid classi�er that will perform at least as well as the best available classi�er for anytarget conditions. This robust performance extends across a wide variety of comparison frameworks, including theoptimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. In somecases, the performance of the hybrid can actually surpass that of the best known classi�er. The hybrid is also e�cientto build, to store, and to update. Finally, we point to empirical evidence that a robust hybrid classi�er is needed formany real-world problems.Keywords: classi�cation, learning, uncertainty, evaluation, comparison, multiple models, cost-sensitive learning,skewed distributions
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Running head: Robust Classi�cation for Imprecise Environments 11 IntroductionTraditionally, classi�cation systems have been built by experimenting with many di�erent classi�ers, comparingtheir performance and choosing the best. Experimenting with di�erent induction algorithms, parameter settings,and training regimes yields a large number of classi�ers to be evaluated and compared. Unfortunately, comparisonis often di�cult in real-world environments because key parameters of the target environment are not known. Forexample, the optimal cost/bene�t tradeo�s and the target class priors seldom are known precisely, and often aresubject to change. For example, in fraud detection we cannot ignore either the cost or class distribution, nor canwe assume that our distribution speci�cations are precise or static (Fawcett & Provost, 1997). We need a methodfor the management, comparison, and application of multiple classi�ers that is robust to imprecise and changingenvironments.We describe the ROC convex hull (rocch) method, which combines techniques from ROC analysis, decisionanalysis and computational geometry. The ROC convex hull decouples classi�er performance from speci�c classand cost distributions, and may be used to specify the subset of methods that are potentially optimal under anycombination of cost assumptions and class distribution assumptions. The rocch method is e�cient, so it facilitatesthe comparison of a large number of classi�ers. It minimizes the management of classi�er performance data becauseit can specify exactly those classi�ers that are potentially optimal, and it is incremental, easily incorporating newand varied classi�ers.We demonstrate that it is possible and desirable to avoid complete commitment to a single best classi�er duringsystem construction. Instead, the rocch can be used to build from the available classi�ers a hybrid classi�cationsystem that will perform best under any target cost/bene�t and class distributions. Target conditions can then bespeci�ed at run time. Moreover, in cases where precise information is still unavailable when the system is run (or ifthe conditions change dynamically during operation), the hybrid system can be tuned easily (and optimally) basedon feedback from its actual performance.The paper is structured as follows. First we sketch briey the traditional approach to building such systems,in order to demonstrate that it is brittle under the types of imprecision common in real-world problems. We thenintroduce and describe the rocch and its properties for comparing and visualizing classi�er performance in impreciseenvironments. In the following sections we formalize the notion of a robust classi�cation system, and show that the
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Running head: Robust Classi�cation for Imprecise Environments 2rocch is an elegant method for constructing one automatically. The solution is elegant because the resulting hybridclassi�er is robust for a wide variety of problem formulations, including the optimization of metrics such as accuracy,expected cost, lift, precision, recall, and workforce utilization, and it is e�cient to build, store and update. We thenshow that the hybrid can actually do better than the best known classi�er in some situations. Finally, by citingresults from empirical studies, we provide evidence that this type of system is needed.1.1 An exampleA systems-building team wants to create a system that will take a large number of instances and identify those forwhich an action should be taken. The instances could be potential cases of fraudulent account behavior, of faultyequipment, of responsive customers, of interesting science, etc. We consider problems for which the best method forclassifying or ranking instances is not well de�ned, so the system builders may consider machine learning methods,neural networks, case-based systems, and hand-crafted knowledge bases as potential classi�cation models. Ignoringfor the moment issues of e�ciency, the foremost question facing the system builders is: which of the available modelsperforms \best" at classi�cation?Traditionally, an experimental approach has been taken to answer this question, because the distribution ofinstances can be sampled if it is not known a priori. The standard approach is to estimate the error rate of eachmodel statistically and then to choose the model with the lowest error rate. This strategy is common in machinelearning, pattern recognition, data mining, expert systems and medical diagnosis. In some cases, other measures suchas cost or bene�t are used as well. Applied statistics provides methods such as cross-validation and the bootstrapfor estimating model error rates and recent studies have compared the e�ectiveness of di�erent methods (Salzberg,1997; Kohavi, 1995; Dietterich, 1998).Unfortunately, this experimental approach is brittle under two types of imprecision that are common in real-worldenvironments. Speci�cally, costs and bene�ts usually are not known precisely, and target class distributions oftenare known only approximately as well. This observation has been made by many authors (Bradley, 1997; Catlett,1995), and is in fact the concern of a large sub�eld of decision analysis (Weinstein & Fineberg, 1980). Imprecisionalso arises because the environment may change between the time the system is conceived and the time it is used,and even as it is used. For example, levels of fraud and levels of customer responsiveness change continually overtime and from place to place.
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Running head: Robust Classi�cation for Imprecise Environments 31.2 Basic terminologyIn this paper we address two-class problems. Formally, each instance I is mapped to one element of the set fp;ng of(correct) positive and negative classes. A classi�cation model (or classi�er) is a mapping from instances to predictedclasses. Some classi�cation models produce a continuous output (e.g., an estimate of an instance's class membershipprobability) to which di�erent thresholds may be applied to predict class membership. To distinguish between theactual class and the predicted class of an instance, we will use the labels fY;Ng for the classi�cations produced by amodel. For our discussion, let c(classi�cation; class) be a two-place error cost function where c(Y;n) is the cost of afalse positive error and c(N;p) is the cost of a false negative error.1 We represent class distributions by the classes'prior probabilities p(p) and p(n) = 1� p(p).The true positive rate, or hit rate, of a classi�er is:TP = p(Yjp) � positives correctly classi�edtotal positivesThe false positive rate, or false alarm rate, of a classi�er is:FP = p(Yjn) � negatives incorrectly classi�edtotal negativesThe traditional experimental approach is brittle because it chooses one model as \best" with respect to a speci�cset of cost functions and class distribution. If the target conditions change, this system may no longer performoptimally, or even acceptably. As an example, assume that we have a maximum false positive rate FP , that mustnot be exceeded. We want to �nd the classi�er with the highest possible true positive rate, TP , that does not exceedthe FP limit. This is the Neyman-Pearson decision criterion (Egan, 1975). Three classi�ers, under three such FPlimits, are shown in Figure 1. A di�erent classi�er is best for each FP limit; any system built with a single \best"classi�er is brittle if the FP requirement can change.1For this paper, consider error costs to include bene�ts not realized.
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Figure 1: Three classi�ers under three di�erent Neyman-Pearson decision criteria2 Evaluating and visualizing classi�er performance2.1 Classi�er comparison: decision analysis and ROC analysisMost prior work on building classi�ers uses classi�cation accuracy (or, equivalently, undi�erentiated error rate) asthe primary evaluation metric. The use of accuracy assumes that the class priors in the target environment will beconstant and relatively balanced. In the real world this is rarely the case. Classi�ers are often used to sift througha large population of normal or uninteresting entities in order to �nd a relatively small number of unusual ones;for example, looking for defrauded accounts among a large population of customers, screening medical tests for rarediseases, and checking an assembly line for defective parts. Because the unusual or interesting class is rare amongthe general population, the class distribution is very skewed (Ezawa, Singh, & Norton, 1996; Fawcett & Provost,1997; Kubat, Holte, & Matwin, 1998; Saitta & Neri, 1998).As the class distribution becomes more skewed, evaluation based on accuracy breaks down. Consider a domainwhere the classes appear in a 999:1 ratio. A simple rule|always classify as the maximum likelihood class|givesa 99.9% accuracy. This performance may be quite di�cult for an induction algorithm to beat, though the simplerule presumably is unacceptable if a non-trivial solution is sought. Skews of 102 are common in fraud detection and
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Running head: Robust Classi�cation for Imprecise Environments 5skews exceeding 106 have been reported in other applications (Clearwater & Stern, 1991).Evaluation by classi�cation accuracy also tacitly assumes equal error costs : c(Y;n) = c(N;p). In the real worldthis is rarely the case because classi�cations tacitly involve actions, which have consequences. Actions can be asdiverse as cancelling a credit card account, moving a control surface on an airplane, or informing a patient of a cancerdiagnosis. These actions have consequences, sometimes grave, and performing an incorrect action can be very costly.Rarely are the costs of mistakes equivalent. In mushroom classi�cation, for example, judging a poisonous mushroomto be edible is far worse than judging an edible mushroom to be poisonous. Indeed, it is hard to imagine a domainin which a learning system may be indi�erent to whether it makes a false positive or a false negative error. In suchcases, accuracy maximization should be replaced with cost minimization.The problems of unequal error costs and uneven class distributions are related. It has been suggested that, forlearning, high-cost instances can be compensated for by increasing their prevalence in an instance set (Breiman,Friedman, Olshen, & Stone, 1984). Unfortunately, little work has been published on either problem. There existseveral dozen articles in which techniques for cost-sensitive learning are suggested (Turney, 1996), but little is doneto evaluate and compare them (the article of Pazzani et al. (1994) being the exception). The literature provides evenless guidance in situations where distributions are imprecise or can change.If a model produces an estimate of p(pjI), the posterior probability of an instance's class membership, as mostmachine-learned models can, decision analysis gives us a way to produce cost-sensitive classi�cations (Weinstein &Fineberg, 1980). Classi�er error frequencies can be used to approximate probabilities (Pazzani et al., 1994). For aninstance I , the decision to emit a positive classi�cation from a particular classi�er is:[1� p(pjI)] � c(Y;n) < p(pjI) � c(N;p)Regardless of whether a classi�er produces probabilistic or binary classi�cations, its normalized cost on a test setcan be evaluated empirically as: Cost = FP � c(Y;n) + FN � c(N;p)Most published work on cost-sensitive classi�cation uses an equation such as this to rank classi�ers. Given a set ofclassi�ers, a set of examples, and a precise cost function, each classi�er's cost is computed and the minimum-costclassi�er is chosen. However, as discussed above, such analyses assume that the distributions are precise and static.
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Figure 2: ROC graph of three classi�ersMore general comparisons can be made with Receiver Operating Characteristic (ROC) analysis, a classic method-ology from signal detection theory that is now common in medical diagnosis and has recently begun to be used moregenerally in AI classi�er work (Egan, 1975; Beck & Schultz, 1986; Swets, 1988). ROC graphs depict tradeo�s betweenhit rate and false alarm rate.We use the term ROC space to denote the coordinate system used for visualizing classi�er performance. In ROCspace, TP is represented on the Y axis and FP is represented on the X axis. Each classi�er is represented by thepoint in ROC space corresponding to its (FP; TP ) pair. For models that produce a continuous output, e.g., posteriorprobabilities, TP and FP vary together as a threshold on the output is varied between its extremes (each thresholdde�nes a classi�er); the resulting curve is called the ROC curve. An ROC curve illustrates the error tradeo�s availablewith a given model. Figure 2 shows a graph of three typical ROC curves; in fact, these are the complete ROC curvesof the classi�ers shown in Figure 1.For orientation, several points on an ROC graph should be noted. The lower left point (0; 0) represents thestrategy of never alarming, the upper right point (1; 1) represents the strategy of always alarming, the point (0; 1)represents perfect classi�cation, and the line y = x (not shown) represents the strategy of randomly guessing theclass. Informally, one point in ROC space is better than another if it is to the northwest (TP is higher, FP is lower,
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Figure 3: An ROC graph of four classi�ersor both). An ROC graph allows an informal visual comparison of a set of classi�ers. In Figure 3, curve A is betterthan curve D because it dominates in all points.ROC graphs illustrate the behavior of a classi�er without regard to class distribution or error cost, and so theydecouple classi�cation performance from these factors. Unfortunately, while an ROC graph is a valuable visualizationtechnique, it does a poor job of aiding the choice of classi�ers. Only when one classi�er clearly dominates anotherover the entire performance space can it be declared better. Consider the classi�ers shown in Figure 3. Which isbest? The answer depends upon the performance requirements, i.e., the error costs and class distributions in e�ectwhen the classi�ers are to be used. Take a moment to convince yourself which classi�ers in Figure 3 are optimal forwhat conditions.2.2 The ROC Convex Hull methodIn this section we combine decision analysis with ROC analysis and adapt them for comparing the performance of aset of learned classi�ers. The method is based on three high-level principles. First, ROC space is used to separateclassi�cation performance from class and cost distribution information. Second, decision-analytic information isprojected onto the ROC space. Third, the convex hull in ROC space is used to identify the subset of methods that
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Running head: Robust Classi�cation for Imprecise Environments 8are potentially optimal.2.2.1 Iso-performance linesBy separating classi�cation performance from class and cost distribution assumptions, the decision goal can beprojected onto ROC space for a neat visualization. Speci�cally, the expected cost of applying the classi�er representedby a point (FP ,TP ) in ROC space is:p(p) � (1� TP ) � c(N;p) + p(n) � FP � c(Y;n)Therefore, two points, (FP1,TP1) and (FP2,TP2), have the same performance ifTP2 � TP1FP2 � FP1 = c(Y;n)p(n)c(N;p)p(p)This equation de�nes the slope of an iso-performance line, i.e., all classi�ers corresponding to points on the linehave the same expected cost. Each set of class and cost distributions de�nes a family of iso-performance lines.Lines \more northwest"|having a larger TP -intercept|are better because they correspond to classi�ers with lowerexpected cost.Because in most real-world cases the target distributions are not known precisely, it is valuable to be ableto identify what subset of classi�ers is potentially optimal. Each possible set of distributions de�nes a family ofiso-performance lines, and for a given family, the optimal methods are those that lie on the \most-northwest" iso-performance line. Thus, a classi�er is potentially optimal if and only if it lies on the northwest boundary (i.e., abovethe line y = x) of the convex hull (Barber, Dobkin, & Huhdanpaa, 1993) of the set of points in ROC space.2In Section 3 we provide a formal proof, but roughly one can see that if a point lies on the convex hull, thenthere exists a line through that point such that no other line with the same slope through any other point has alarger TP -intercept, and thus the classi�er represented by the point is optimal under any distribution assumptionscorresponding the that slope. If a point does not lie on the convex hull, then for any family of iso-performance linesthere is another point that lies on an iso-performance line with the same slope but larger TP -intercept, and thus theclassi�er cannot be optimal.2The convex hull of a set of points is the smallest convex set that contains the points.
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Figure 4: The ROC convex hull identi�es potentially optimal classi�ers.We call the convex hull of the set of points in ROC space the ROC convex hull (rocch) of the corresponding setof classi�ers. Figure 4 shows the curves of Figure 3 with the ROC convex hull drawn (CH, the border between theshaded and unshaded areas). D is clearly not optimal. Surprisingly, B can never be optimal either because none ofthe points of its ROC curve lies on the convex hull. We can also remove from consideration any points of A and Cthat do not lie on the hull.2.2.2 The ROC convex hullConsider these classi�ers under two distribution scenarios. In each, negative examples outnumber positives by 5:1.In scenario A, false positive and false negative errors have equal cost. In scenario B, a false negative is 25 times asexpensive as a false positive (e.g., missing a case of fraud is much worse than a false alarm). Each scenario de�nesa family of iso-performance lines. The lines corresponding to scenario A have slope 5; those for B have slope 15 .Figure 5 shows the convex hull and two iso-performance lines, � and �. Line � is the \best" line with slope 5 thatintersects the convex hull; line � is the best line with slope 15 that intersects the convex hull. Each line identi�es theoptimal classi�er under the given distribution.Figure 6 shows the three ROC curves from our initial example, with the convex hull drawn.
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Figure 5: Lines � and � show the optimal classi�er under di�erent sets of conditions.2.2.3 Generating the ROC Convex HullThe ROC convex hull method selects the potentially optimal classi�ers based on the ROC convex hull and iso-performance lines.1. For each classi�er, plot TP and FP in ROC space. For continuous-output classi�ers, vary a threshold over theoutput range and plot the ROC curve.2. Find the convex hull of the set of points representing the predictive behavior of all classi�ers of interest. For nclassi�ers this can be done in O(n log(n)) time by the QuickHull algorithm (Barber et al., 1993).3. For each set of class and cost distributions of interest, �nd the slope (or range of slopes) of the correspondingiso-performance lines.4. For each set of class and cost distributions, the optimal classi�er will be the point on the convex hull thatintersects the iso-performance line with largest TP -intercept. Ranges of slopes specify hull segments.Figures 4 and 5 demonstrate how the subset of classi�ers that are potentially optimal can be identi�ed and howclassi�ers can be compared under di�erent cost and class distributions. We now demonstrate additional bene�ts ofthe method.
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Figure 6: ROC curves with convex hull2.2.4 Comparing a variety of classi�ersThe ROC convex hull method accommodates both binary and continuous classi�ers. Binary classi�ers are representedby individual points in ROC space. Continuous classi�ers produce numeric outputs to which thresholds can beapplied, yielding a series of (FP; TP ) pairs comprising an ROC curve. Each point may or may not contribute to theROC convex hull. Figure 7 depicts the binary classi�ers E, F and G added to the previous hull. E may be optimalunder some circumstances because it extents the convex hull. Classi�ers F and G never will be optimal because theydo not extend the hull.New classi�ers can be added incrementally to an rocch analysis, as demonstrated in Figure 7 by the additionof classi�ers E,F, and G. Each new classi�er either extends the existing hull or does not. In the former case the hullmust be updated accordingly, but in the latter case the new classi�er can be ignored. Therefore, the method does notrequire saving every classi�er (or saving statistics on every classi�er) for re-analysis under di�erent conditions|onlythose points on the convex hull. No other classi�ers can ever be optimal, so they need not be saved. Every classi�erthat does lie on the convex hull must be saved.
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Figure 7: Classi�er E may be optimal because it extends the ROC convex hull. F and G cannot because they donot.2.2.5 Changing distributions and costsClass and cost distributions that change over time necessitate the reevaluation of classi�er choice. In fraud detection,costs change based on workforce and reimbursement issues; the amount of fraud changes monthly. With the ROCconvex hull method, comparing under a new distribution involves only calculating the slope(s) of the correspondingiso-performance lines and intersecting them with the hull, as shown in Figure 5.The ROC convex hull method scales gracefully to any degree of precision in specifying the cost and class distribu-tions. If nothing is known about a distribution, the ROC convex hull shows all classi�ers that may be optimal underany conditions. Figure 4 showed that, given classi�ers A, B, C and D of Figure 3, only A and C can ever be optimal.With complete information, the method identi�es the optimal classi�er(s). In Figure 5 we saw that classi�er A (witha particular threshold value) is optimal under scenario A and classi�er C is optimal under scenario B. Next we willsee that with less precise information, the ROC convex hull can show the subset of possibly optimal classi�ers.2.2.6 Sensitivity analysisImprecise distribution information de�nes a range of slopes for iso-performance lines. This range of slopes intersectsa segment of the ROC convex hull, which facilitates sensitivity analysis. For example, if the segment de�ned by a
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(c)Figure 8: Sensitivity analysis using the ROC convex hull: (a) low sensitivity (only C can be optimal), (b) highsensitivity (A, E, or C can be optimal), (c) doing nothing is the optimal strategyrange of slopes corresponds to a single point in ROC space or a small threshold range for a single classi�er, then thereis no sensitivity to the distribution assumptions in question. Consider a scenario similar to A and B in that negativeexamples are 5 times as prevalent as positive ones. In this scenario, the cost of dealing with a false alarm is between$10 and $20, and the cost of missing a positive example is between $200 and $250. This de�nes a range of slopesfor iso-performance lines: 15 � m � 12 . Figure 8a depicts this range of slopes and the corresponding segment of theROC convex hull. The �gure shows that the choice of classi�er is insensitive to changes within this range (and only�ne tuning of the classi�er's threshold will be necessary). Figure 8b depicts a scenario with a wider range of slopes:12 � m � 3. The �gure shows that under this scenario the choice of classi�er is very sensitive to the distribution.Classi�ers A, C and E each are optimal for some subrange.A particularly interesting question in any domain is, When is a \do nothing" strategy better than any of myavailable classi�ers? Consider Figure 8c. The point (0; 0) corresponds to doing nothing, i.e., issuing negativeclassi�cations regardless of input. Any set of cost and class distribution assumptions for which the best hull-intersecting iso-performance line passes through the origin (e.g., line �) de�nes a scenario where this null strategy isoptimal. Intuitively, Figure 8c illustrates that false positives are so expensive (or negatives so prevalent) that neitherA nor C is good enough to be used. Improvements to A might allow it to beat the null strategy represented by �,
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Running head: Robust Classi�cation for Imprecise Environments 14but no modi�cation to C is likely to have an e�ect.3 Building robust classi�ersUp to this point, we have concentrated on the use of the rocch for visualizing and evaluating sets of classi�ers. Therocch helps to delay classi�er selection as long as possible, yet provides a rich performance comparison. However,once system-building incorporates a particular classi�er, the problem of brittleness resurfaces. This is importantbecause the delay between system-building and deployment may be large, and because many systems must survivefor years. In fact, in many domains a precise, static speci�cation of future costs and class distributions is not justunlikely, it is impossible (Provost, Fawcett, & Kohavi, 1998).We address this brittleness by using the rocch to produce robust classi�ers, de�ned as satisfying the following.Under any target cost and class distributions, a robust classi�er will perform at least as well as the best classi�er forthose conditions. Our statements about optimality are practical: the \best" classi�er may not be the Bayes-optimalclassi�er, but it is at least as good as any known classi�er. Stating that a classi�er is robust is stronger than statingthat it is optimal for a speci�c set of conditions. A robust classi�er is optimal under all possible conditions.In principle, classi�cation brittleness could be overcome by saving all possible classi�ers (neural nets, decisiontrees, expert systems, probabilistic models, etc.) and then performing an automated run-time comparison under thedesired target conditions. However, such a system is not feasible because of time and space limitations|there aremyriad possible classi�cation models, arising from the many di�erent learning methods under their many di�erentparameter settings. Storing all the classi�ers is not practical, and tuning the system by comparing classi�ers on they under di�erent conditions is not practical. Fortunately, doing so is not necessary. Moreover, we will show that itis sometimes possible to do better than any of these classi�ers.3.1 ROCCH-hybrid classi�ersWe now show that robust hybrid classi�ers can be built using the rocch.De�nition 1 Let I be the space of possible instances and let C be the space of sets of classi�cation models. Let a�-hybrid classi�er comprise a set of classi�cation models C 2 C and a function� : I�<�C! fY;Ng:
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Running head: Robust Classi�cation for Imprecise Environments 15A �-hybrid classi�er takes as input an instance I 2 I for classi�cation and a number x 2 <. As output, it producesthe classi�cation produced by �(I; x; C).Things will get more involved later, but for the time being consider that each set of cost and class distributionsde�nes a value for x, which is used to select the (predetermined) best classi�er for those conditions. To build a�-hybrid classi�er, we must de�ne � and the set C. We would like C to include only those models that performoptimally under some conditions (class and cost distributions), since these will be stored by the system, and wewould like � to be general enough to apply to a variety of problem formulations.The models comprising the rocch can be combined to form a �-hybrid classi�er that is an elegant, robustclassi�er.De�nition 2 The rocch-hybrid is a �-hybrid classi�er where C is the set of classi�ers that comprise the rocchand � makes classi�cations using the classi�er on the rocch with FP = x.Note that for the moment the rocch-hybrid is de�ned only for FP values corresponding to rocch vertices.3.2 Robust classi�cationOur de�nition of robust classi�ers was intentionally vague about what it means for one classi�er to be better thananother, because di�erent situations call for di�erent comparison frameworks. We now continue with minimizingexpected cost, because the process of proving that the rocch-hybrid minimizes expected cost for any cost and classdistributions provides a deep understanding of why and how the rocch-hybrid works. Later we generalize to a widevariety of comparison frameworks.The rocch-hybrid can be seen as an application of multicriteria optimization to classi�er design and construction.The classi�ers on the rocch are Edgeworth-Pareto optimal (Stadler, 1988) with respect to TP, FP, and the objectivefunctions we discuss. Multicriteria optimization was used previously in machine learning by Tcheng, Lambert, Luand Rendell for the selection of inductive bias (Tcheng, Lambert, Lu, & Rendell, 1989). Alternatively, the rocchcan be seen as an application of the theory of games and statistical decisions, for which convex sets (and the convexhull) represent optimal strategies (Blackwell & Girshick, 1954).
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Running head: Robust Classi�cation for Imprecise Environments 163.2.1 Minimizing expected costFrom above, the expected cost of applying a classi�er is:ec(FP; TP ) = p(p) � (1� TP ) � c(N;p) + p(n) � FP � c(Y;n) (1)For a particular set of cost and class distributions, the slope of the corresponding iso-performance lines is:mec = c(Y;n)p(n)c(N;p)p(p) (2)Every set of conditions will de�ne an mec � 0. We now can show that the rocch-hybrid is robust for problemswhere the \best" classi�er is the classi�er with the minimum expected cost.The slope of the rocch is an important tool in our argument. The rocch is a piecewise-linear, concave-down\curve." Therefore, as x increases, the slope of the rocch is monotonically non-increasing with k�1 discrete values,where k is the number of rocch component classi�ers, including the degenerate classi�ers that de�ne the rocchendpoints. Where there will be no confusion, we use phrases such as \points in ROC space" as a shorthand for themore cumbersome \classi�ers corresponding to points in ROC space." For this subsection, \points on the rocch"refer to vertices of the rocch.De�nition 3 For any real number m � 0, the point where the slope of the rocch is m is one of the (arbitrarilychosen) endpoints of the segment of the rocch with slope m, if such a segment exists. Otherwise, it is the vertex forwhich the left adjacent segment has slope greater than m and the right adjacent segment has slope less than m.For completeness, the leftmost endpoint of the rocch is considered to be attached to a segment with in�niteslope and the rightmost endpoint of the rocch is considered to be attached to a segment with zero slope. Note thatevery m � 0 de�nes at least one point on the rocch.Lemma 1 For any set of cost and class distributions, there is a point on the rocch with minimum expected cost.
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Running head: Robust Classi�cation for Imprecise Environments 17Proof: (by contradiction) Assume that for some conditions there exists a point C with smaller expected cost thanany point on the rocch. By equations 1 and 2, a point (FP2,TP2) has the same expected cost as a point (FP1,TP1)if TP2 � TP1FP2 � FP1 = mecTherefore, for conditions corresponding to mec, all points with equal expected cost form an iso-performance line inROC space with slope mec. Also by 1 and 2, points on lines with larger y-intercept have lower expected cost. Now,point C is not on the rocch, so it is either above the curve or below the curve. If it is above the curve, thenthe rocch is not a convex set enclosing all points, which is a contradiction. If it is below the curve, then the iso-performance line through C also contains a point P that is on the rocch. Since all points on an iso-performanceline have the same expected cost, point C does not have smaller expected cost than all points on the rocch, which isalso a contradiction. 2Although it is not necessary for our purposes here, it can be shown that all of the minimum expected costclassi�ers are on the rocch.De�nition 4 An iso-performance line with slope m is an m-iso-performance line.Lemma 2 For any cost and class distributions that translate to mec, a point on the rocch has minimum expectedcost only if the slope of the rocch at that point is mec.Proof: (by contradiction) Suppose that there is a point D on the rocch where the slope is not mec, but the pointdoes have minimum expected cost. By De�nition 3, either (a) the segment to the left of D has slope less than mec,or (b) the segment to the right of D has slope greater than mec. For case (a), consider point N, the vertex of therocch that neighbors D to the left, and consider the (parallel) mec-iso-performance lines lD and lN through D andN. Because N is to the left of D and the line connecting them has slope less than mec, the y-intercept of lN will begreater than the y-intercept of lD. This means that N will have lower expected cost than D, which is a contradiction.The argument for (b) is analogous (symmetric). 2Lemma 3 If the slope of the rocch at a point is mec, then the point has minimum expected cost.Proof: If this point is the only point where the slope of the rocch is mec, then the proof follows directly from Lemma
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Running head: Robust Classi�cation for Imprecise Environments 181 and Lemma 2. If there are multiple such points, then by de�nition they are connected by an mec-iso-performanceline, so they have the same expected cost, and once again the proof follows directly from Lemma 1 and Lemma 2. 2It is straightforward now to show that the rocch-hybrid is robust for the problem of minimizing expected cost.Theorem 4 The rocch-hybrid minimizes expected cost for any cost distribution and any class distribution.Proof: Because the rocch-hybrid is composed of the classi�ers corresponding to the points on the rocch, thisfollows directly from Lemmas 1, 2, and 3. 2Now we have shown that the rocch-hybrid is robust when the goal is to provide the minimum expected costclassi�cation. This result is important even for accuracy maximization, because the preferred classi�er may bedi�erent for di�erent target class distributions. This is rarely taken into account in experimental comparisons ofclassi�ers.Corollary 5 The rocch-hybrid minimizes error rate (maximizes accuracy) for any target class distribution.Proof: Error rate minimization is cost minimization with uniform error costs. 23.3 Robust classi�cation for other common metricsShowing that the rocch-hybrid is robust not only helps us with understanding the rocch method generally, it alsoshows us how the rocch-hybrid will pick the best classi�er in order to produce the best classi�cations, which wewill return to later. If we ignore the need to specify how to pick the best component classi�er, we can show that therocch applies more generally.Theorem 6 For any classi�er evaluation metric f(FP; TP ), if @f@TP � 0 and @f@FP � 0 then there exists a point onthe rocch with an f-value at least as high as that of any known classi�er.Proof: (by contradiction) Assume that there exists a classi�er Co, not on the rocch, with an f-value higher thanthat of any point on the rocch. Co is either (i) above or (ii) below the rocch. In case (i), the rocch is not a convexset enclosing all the points, which is a contradiction. In case (ii), let Co be represented in ROC-space by (FPo; TPo).Because Co is below the rocch there exist points, call one (FPp; TPp), on the rocch with TPp > TPo and FPp <FPo. However, by the restriction on the partial derivatives, for any such point f(FPp; TPp) � f(FPo; TPo), whichagain is a contradiction. 2
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Figure 9: The ROC Convex Hull used to select a classi�er under the Neyman-Pearson criterionThere are two complications to the more general use of the rocch, both of which are illustrated by the decisioncriterion from our very �rst example. Recall that the Neyman-Pearson criterion speci�es a maximum acceptableFP rate. In standard ROC analysis, selecting the best classi�er for the Neyman-Pearson criterion is easy: plotROC curves, draw a vertical line at the desired maximum FP , and pick the ROC curve with the largest TP at theintersection with this line.For minimizing expected cost it was su�cient for the rocch-hybrid to choose a vertex from the rocch for anymec value. For problem formulations such as the Neyman-Pearson criterion, the performance statistics at a non-vertex point on the rocch may be preferable (see Figure 9). Fortunately, with a slight extension, the rocch-hybridcan yield a classi�er with these performance statistics.Theorem 7 An rocch-hybrid can achieve the TP :FP tradeo� represented by any point on the rocch, not just thevertices.Proof: (by construction) Extend �(I; x; C) to non-vertex points as follows. Pick the point P on the rocch withFP = x (there is exactly one). Let TPx be the TP value of this point. If (x, TPx) is an rocch vertex, use thecorresponding classi�er. If it is not a vertex, call the left endpoint of the hull segment Cl and the right endpoint Cr.Let d be the distance between Cl and Cr, and let p be the distance between Cl and P . Make classi�cations as follows.
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Running head: Robust Classi�cation for Imprecise Environments 20For each input instance ip a weighted coin and choose the answer given by classi�er Cl with probability pd and thatgiven by classi�er Cr with probability 1� pd . It is straightforward to show that FP and TP for this classi�er will bex and TPx. 2The second complication is that, as illustrated by the Neyman-Pearson criterion, many practical classi�er com-parison frameworks include constrained optimization problems (below we will discuss other frameworks). Arbitrarilyconstrained optimizations are problematic for the rocch-hybrid. Given total freedom, it is easy to place constraintson classi�er performance such that, even with the restriction on the partial derivatives, an interior point scores higherthan any acceptable point on the hull. For example, two linear constraints can enclose a subset of the interior andexclude the entire rocch|there will be no acceptable points on the rocch. However, many realistic constraints donot thwart the optimality of the rocch-hybrid.Theorem 8 For any classi�er evaluation metric f(FP; TP ), if @f@TP � 0 and @f@FP � 0 and no constraint on classi�erperformance eliminates any point on the rocch without also eliminating all higher-scoring interior points, then therocch-hybrid can perform at least as well as any known classi�er.Proof: Follows directly from Theorem 6 and Theorem 7. 2Linear constraints on classi�ers' FP : TP performance are common for real-world problems, so the following isuseful.Theorem 9 For any classi�er evaluation metric f(FP; TP ), if @f@TP � 0 and @f@FP � 0 and there is a single constrainton classi�er performance of the form a � TP + b � FP � c, with a and b non-negative, then the rocch-hybrid canperform at least as well as any known classi�er.Proof: The single constraint eliminates from contention all points (classi�ers) that do not fall to the left of, or below,a line with non-positive slope. By the restriction on the partial derivatives, such a constraint will not eliminate apoint on the rocch without also eliminating all interior points with higher f-values. Thus, the proof follows directlyfrom Theorem 8. 2So, �nally, we have the following.Corollary 10 For the Neyman-Pearson criterion, the rocch-hybrid can perform at least as well as that of anyknown classi�er.
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Running head: Robust Classi�cation for Imprecise Environments 21Proof: For the Neyman-Pearson criterion, the evaluation metric f(FP; TP ) = TP , that is, higher TP is better.The constraint on classi�er performance is FP � FPmax. These satisfy the conditions for Theorem 9, and thereforethis corollary follows. 2All the foregoing e�ort may seem misplaced for a simple criterion like Neyman-Pearson. However, there are manyother realistic problem formulations. For example, consider the decision-support problem of optimizing workforceutilization, in which a workforce is available that can process a �xed number of cases. Too few cases will under-utilizethe workforce, but too many cases will leave some cases unattended (expanding the workforce usually is not a short-term solution). If the workforce can handle C cases, the system should present the best possible set of C cases. Thisis similar to the Neyman-Pearson criterion, but with an absolute cuto� (C) instead of a percentage cuto� (FP ).Theorem 11 For workforce utilization, the rocch-hybrid will provide the best set of C cases, for any choice of C.Proof: (by construction) The decision criterion is to maximize TP subject to the constraint:TP � P + FP �N � CThe theorem therefore follows from Theorem 9. 2In fact, many screening problems, such as are found in marketing and information retrieval, use exactly this linearconstraint, so it follows that for maximizing lift (Berry & Lino�, 1997), precision or recall, subject to absolute orpercentage cuto�s on case presentation, the rocch-hybrid will provide the best set of cases.As with minimizing expected cost, imprecision in the environment forces us to favor a robust solution for theseother comparison frameworks. For many real-world problems, the precise desired cuto� will be unknown or willchange (e.g., because of fundamental uncertainty, variability in case di�culty or competing responsibilities). Whatis worse, for a �xed (absolute) cuto� merely changing the size of the universe of cases (e.g., the size of a documentcorpus) may change the preferred classi�er, because it will change the constraint line. The rocch-hybrid providesa robust solution because it gives the optimal subset of cases for any constraint line. For example, for documentretrieval the rocch-hybrid will yield the best N documents for any N , for any prior class distribution (in the targetcorpus), and for any target corpus size.
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Running head: Robust Classi�cation for Imprecise Environments 223.4 Ranking casesAn apparent solution to the problem of robust classi�cation is to use a system that ranks cases, rather than onethat provides classi�cations, and just work down the ranked list (the cuto� is implicit). However, for most practicalsituations, choosing the best ranking model is equivalent to choosing which classi�er is best for the cuto� that will beused. Remember that ROC curves are formed from case rankings by moving the cuto� from one extreme to the other.For di�erent cuto�s, implicit or explicit, di�erent ranking functions perform better. This is exactly the problem ofrobust classi�cation, and is solved elegantly by the rocch-hybrid|the rocch-hybrid comprises the set rankers thatare best for all possible cuto�s. As an example, consider two ranking functions Ra and Rb. Ra is perfect for the �rst10 cases, and picks randomly thereafter. Rb randomly chooses the �rst 10 cases, and ranks perfectly thereafter. Rais preferable for a cuto� of 10 cases and Rb is preferable for much larger cuto�s.3.5 Whole-curve metricsIn situations where either the target cost distribution or class distribution is completely unknown, some researchersadvocate choosing the classi�er that maximizes a single-number metric representing the average performance overthe entire curve. A common whole-curve metric is the area under the ROC curve (AUC) (Bradley, 1997). TheAUC is equivalent to the probability that a randomly chosen positive instance will be rated higher than a negativeinstance, and thereby is also estimated by the Wilcoxon test of ranks (Hanley & McNeil, 1982). A criticism of AUCis that for speci�c target conditions the classi�er with the maximum AUC may be suboptimal (Provost et al., 1998)(this criticism may be made of any single-number metric). Fortunately, not only is the rocch-hybrid optimal forany speci�c target conditions, it has the maximum AUC.Theorem 12 There is no classi�er with AUC larger than that of the rocch-hybrid.Proof: (by contradiction) Assume the ROC curve for another classi�er had larger area. This curve would have tohave at least one point in ROC-space that falls outside the area enclosed by the rocch. This means that the convexhull does not enclose all points, which is a contradiction. 2
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Running head: Robust Classi�cation for Imprecise Environments 233.6 Using the ROCCH-hybridTo use the rocch-hybrid for classi�cation, we need to translate environmental conditions to x values to plug into�(I; x; C). For minimizing expected cost, Equation 2 shows how to translate conditions to mec. For any mec, byLemma 3 we want the FP value of the point where the slope of the rocch is mec, which is straightforward tocalculate. For the Neyman-Pearson criterion the conditions are de�ned as FP values. For workforce utilization withconditions corresponding to a cuto� C, the FP value is found by intersecting the line TP � P + FP �N = C withthe rocch.We have argued that target conditions (misclassi�cation costs and class distribution) are rarely known. It maybe confusing that we now seem to require exact knowledge of these conditions. The rocch-hybrid gives us twoimportant capabilities. First, the need for precise knowledge of target conditions is deferred until run time. Second,in the absence of precise knowledge even at run time, the system can be optimized easily with minimal feedback.By using the rocch-hybrid, information on target conditions is not needed to train and compare classi�ers. Thisis important because of imprecision caused by temporal, geographic, or other di�erences that may exist betweentraining and use. For example, building a system for a real-world problem introduces a non-trivial delay between thetime data are gathered and the time the learned models will be used. The problem is exacerbated in domains whereerror costs or class distributions change over time; even with slow drift, a brittle model may become suboptimalquickly. In many such scenarios, costs and class distributions can be speci�ed (or respeci�ed) at run time withreasonable precision by sampling from the current population, and used to ensure that the rocch-hybrid alwaysperforms optimally.In some cases, even at run time these quantities are not known exactly. A further bene�t of the rocch-hybridis that it can be tuned easily to yield optimal performance with only minimal feedback from the environment.Conceptually, the rocch-hybrid has one \knob" that varies x in �(I; x; C) from one extreme to the other. For anyknob setting, the rocch-hybrid will give the optimal TP :FP tradeo� for the target conditions corresponding tothat setting. Turning the knob to the right increases TP ; turning the knob to the left decreases FP . Because ofthe monotonicity of the rocch-hybrid, simple hill-climbing can guarantee optimal performance. For example, if thesystem produces too many false alarms, turn the knob to the left; if the system is presenting too few cases, turn theknob to the right.
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Running head: Robust Classi�cation for Imprecise Environments 243.7 Beating the component classi�ersPerhaps surprisingly, in many realistic situations an rocch-hybrid system can do better than any of its componentclassi�ers. Consider the Neyman-Pearson decision criterion. The rocch may intersect the FP -line above the highestcomponent ROC curve. This occurs when the FP -line intersects the rocch between vertices; therefore, there is nocomponent classi�er that actually produces these particular (FP ,TP ) statistics, as in Figure 9.Theorem 13 The rocch-hybrid can surpass the performance of its component classi�ers for some Neyman-Pearsonproblems.Proof: For any non-vertex hull point (x,TPx), TPx is larger than the TP for any other point with FP = x. ByTheorem 7, the rocch-hybrid can achieve any TP on the hull. Only a small number of FP values correspond tohull vertices. 2The same holds for other common problem formulations, such as workforce utilization, lift maximization, precisionmaximization, and recall maximization.3.8 Time and space e�ciencyWe have argued that the rocch-hybrid is robust for a wide variety of problem formulations. It is also e�cient tobuild, to store, and to update.The time e�ciency of building the rocch-hybrid depends �rst on the e�ciency of building the component models,which varies widely by model type. Some models built by machine learning methods can be built in seconds (oncedata are available). Hand-built models can take years to build. However, we presume that this is work that would bedone anyway. The rocch-hybrid can be built with whatever methods are available, be there two or two thousand.As described below, as new classi�ers become available, the rocch-hybrid can be updated incrementally. The timee�ciency depends also on the e�ciency of the experimental evaluation of the classi�ers. Once again, we presumethat this is work that would be done anyway (more on this in Limitations). Finally, the time e�ciency of therocch-hybrid depends on the e�ciency of building the rocch, which can be done in O(N logN) time using theQuickHull algorithm (Barber et al., 1993) where N is the number of classi�ers.The rocch is space e�cient, too, because it comprises only classi�ers that might be optimal under some targetconditions.
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Running head: Robust Classi�cation for Imprecise Environments 25Theorem 14 For minimizing expected cost, the rocch-hybrid comprises only classi�ers that are optimal under somecost and class distributions.Proof: Follows directly from Lemmas 1{3 and De�nitions 3 and 4. 2The number of classi�ers that must be stored can be reduced if bounds can be placed on the potential targetconditions. As described above, ranges of conditions de�ne segments of the rocch. Thus, the rocch-hybrid mayneed only a subset of C.Adding new classi�ers to the rocch-hybrid also is e�cient. Adding a classi�er to the rocch will either (i) extendthe hull, adding to (and possibly subtracting from) the rocch-hybrid, or (ii) conclude that the new classi�ers arenot superior to the existing classi�ers in any portion of ROC space and can be discarded.The run-time (classi�cation) complexity of the rocch-hybrid is never worse than that of the component classi�ers.In situations where run-time complexity is crucial, the rocch should be constructed without prohibitively expensiveclassi�cation models. It will then �nd the best subset of the computationally e�cient models.4 Empirical demonstration of needRobust classi�cation is of fundamental interest because it weakens two very strong assumptions: the availability ofprecise knowledge of costs and of class distributions. However, might it not be that existing classi�ers are alreadyrobust? For example, if a given classi�er is optimal under one set of conditions, might it not be optimal under all?It is beyond the scope of this paper to o�er an in-depth experimental study answering this question. However,we can provide solid evidence that the answer is \no" by referring to the results of two prior studies. One is acomprehensive ROC analysis of medical domains recently conducted by Andrew Bradley (1997).3 The other is apublished ROC analysis of UCI database domains that we undertook last year with Ronny Kohavi (Provost et al.,1998).Note that a classi�er dominates if its ROC curve completely de�nes the rocch (which means dominating classi�ersare robust and vice versa). Therefore, if there exist more than a trivially few domains where no classi�er dominates,then techniques like the rocch-hybrid are essential.3His purpose was not to answer this question; fortunately his published results do anyway.
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Figure 10: Bradley's classi�er results for the heart bleeding data.4.1 Bradley's studyBradley studied six medical data sets, noting that \unfortunately, we rarely know what the individual misclassi�cationcosts are." He plotted the ROC curves of six classi�er learning algorithms (two neural nets, two decision trees andtwo statistical techniques).On not one of these data sets was there a dominating classi�er. This means that for each domain, there existdi�erent sets of conditions for which di�erent classi�ers are preferable. In fact, our running example is based on thethree best classi�ers from Bradley's results on the heart bleeding data; his results for the full set of six classi�ers canbe found in Figure 10. Classi�ers constructed for the Cleveland heart disease data, are shown in Figure 11.Bradley's results show clearly that for many domains the classi�er that maximizes any single metric|be itaccuracy, cost, or the area under the ROC curve|will be the best for some cost and class distributions and will notbe the best for others. We have shown that the rocch-hybrid will be the best for all.4.2 Our studyIn the study we performed with Ronny Kohavi, we chose ten datasets from the UCI repository that contained atleast 250 instances, but for which the accuracy for decision trees was less than 95%. For each domain, we inducedclassi�ers for the minority class (for Road, we chose the class Grass). We selected several induction algorithms fromMLC++ (Kohavi, Sommer�eld, & Dougherty, 1997): a decision tree learner (MC4), Naive Bayes with discretization(NB), k-nearest neighbor for several k values (IBk), and Bagged-MC4 (Breiman, 1996). MC4 is similar to C4.5
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Figure 11: Bradley's classi�er results for the Cleveland heart disease data(Quinlan, 1993); probabilistic predictions are made by using a Laplace correction at the leaves. NB discretizes thedata based on entropy minimization (Dougherty, Kohavi, & Sahami, 1995) and then builds the Naive-Bayes model(Domingos & Pazzani, 1997). IBk votes the closest k neighbors; each neighbor votes with a weight equal to one overits distance from the test instance.Some of the ROC curves are shown in Figures 12. For only one (Vehicle) of these ten domains was there anabsolute dominator. In general, very few of the 100 runs performed (on 10 data sets, using 10 cross-validation foldseach) had dominating classi�ers. Some cases are very close, for example Adult and Waveform-21. In other cases acurve that dominates in one area of ROC space is dominated in another. These results also support the need formethods like the rocch-hybrid, which produce robust classi�ers.As examples of what expected-cost-minimizing rocch-hybrids would look like internally, Table 1 shows thecomponent classi�ers that make up the rocch for the four UCI domains of Figure 12. For example, in the Roaddomain (see Figure 12 and Table 1), Naive Bayes would be chosen for any target conditions corresponding to a slopeless than 0:38, and Bagged-MC4 would be chosen for slopes greater than 0:38. They perform equally well at 0:38.5 Limitations and future workThere are limitations to the rocch method as we have presented it here. We have de�ned it only for two-classproblems. We believe that it can be extended to multi-class problems, but have not yet done so formally. It shouldbe noted that the dimensionality of the \ROC-hyperspace" grows quadratically in the number of classes. We have
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Running head: Robust Classi�cation for Imprecise Environments 28Table 1: Locally dominating classi�ers for four UCI domainsDomain Slope range Dominator Domain Slope range DominatorVehicle [0, 1) Bagged-MC4 Satimage [0, 0.05] NBRoad [0, 0.38] NB [0.05, 0.22] Bagged-MC4(Grass) [0.38, 1) Bagged-MC4 [0.22, 2.60] IB5CRX [0, 0.03] Bagged-MC4 [2.60, 3.11] IB3[0.03, 0.06] NB [3.11, 7.54] IB5[0.06, 2.06] Bagged-MC4 [7.54, 31.14] IB3[2.06, 1) NB [31.14, 1) Bagged-MC4also assumed constant error costs for a given type of error, e.g., all false positives cost the same. For some problems,di�erent errors of the same type have di�erent costs. In many cases, such a problem can be transformed for evaluationinto an equivalent problem with uniform intra-type error costs by duplicating instances in proportion to their costs(or by simply modifying the counting procedure accordingly).We have also assumed for this paper that the estimates of the classi�ers' performance statistics (FP and TP ) arevery good. As mentioned above, much work has addressed the production of good estimates for simple performancestatistics such as error rate. Much less work has addressed the production of good ROC curve estimates. As withsimpler statistics, care should be taken to avoid over-�tting the training data and to ensure that di�erences betweenROC curves are meaningful. One solution is to use cross-validation with averaging of ROC curves (Provost et al.,1998), which is the procedure used to produce the ROC curves in Section 4.2. To our knowledge, the issue is openof how best to produce con�dence bands appropriate to a particular problem. Those shown in Section 4.2 areappropriate for the Neyman-Pearson decision criterion (i.e., they show con�dence on TP for various values of FP ).Also, we have addressed predictive performance and computational performance. These are not the only concernsin choosing a classi�cation model. What if comprehensibility is important? The easy answer is that for any particularsetting, the rocch-hybrid is as comprehensible as the underlying model it is using. However, this answer falls shortif the rocch-hybrid is interpolating between two models or if one wants to understand the \multiple-model" systemas a whole.This work is fundamentally di�erent from other recent machine learning work on combining multiple models (Ali& Pazzani, 1996). That work combines models in order to boost performance for a �xed cost and class distribution.The rocch-hybrid combines models for robustness across di�erent cost and class distributions. In principle, thesemethods should be independent|multiple-model classi�ers are candidates for extending the rocch. However, it
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Running head: Robust Classi�cation for Imprecise Environments 29may be that some multiple-model classi�ers achieve increased performance for a speci�c set of conditions by (ine�ect) interpolating along edges of the rocch.The rocch method also complements research on cost-sensitive learning (Turney, 1996). Existing cost-sensitivelearning methods are brittle with respect to imprecise cost knowledge. Thus, the rocch is an essential evaluationtool. Furthermore, cost-sensitive learning may be used to �nd better components for the rocch-hybrid, by searchingexplicitly for classi�ers that extend the rocch.6 ConclusionThe ROC convex hull method is a robust, e�cient solution to the problem of comparing multiple classi�ers inimprecise and changing environments. It is intuitive, can compare classi�ers both in general and under speci�cdistribution assumptions, and provides crisp visualizations. It minimizes the management of classi�er performancedata, by selecting exactly those classi�ers that are potentially optimal; thus, only these need to be saved in preparationfor changing conditions. Moreover, due to its incremental nature, new classi�ers can be incorporated easily, e.g.,when trying a new parameter setting.The rocch-hybrid performs optimally under any target conditions for many realistic problem formulations,including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization.It is e�cient to build in terms of time and space, and can be updated incrementally. Furthermore, it can sometimesclassify better than any (other) known model. Therefore, we conclude that it is an elegant, robust classi�cationsystem.We believe that this work has important implications for both machine learning applications and machine learningresearch (Provost et al., 1998). For applications, it helps free system designers from the need to choose (sometimesarbitrary) comparison metrics before precise knowledge of key evaluation parameters is available. Indeed, suchknowledge may never be available, yet robust systems can still be built.For machine learning research, it frees researchers from the need to have precise class and cost distributioninformation in order to study important related phenomena. In particular, work on cost-sensitive learning has beenimpeded by the di�culty of specifying costs, and by the tenuous nature of conclusions based on a single cost metric.Researchers need not be held back by either. Cost-sensitive learning can be studied generally without specifying costsprecisely. The same goes for research on learning with highly skewed distributions. Which methods are e�ective for
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